
NASA-TM-II2081

Performance of A. Supernodal General Sparse Solver on

the CRAY Y-MP: 1.68 GFLOPS with Autotasking

Horst D. Simon, _ Phuong Vu, and Chao Yang 2

Report RNR-89-002, AprLl 1989

NAS Systems Division

NASA Ames Research Center, Mail Stop 258-5

MoEett Field, CA 94035

April 6, 1989

tThe first author is an employee of Boeing Computer Services, Bellevuew,

WA 98128
2The second and third authors are employees of Cray Research Inc., Mendots

Heights, MN 55120





Sparse Matrix Factorization at 1.68

GFLOPS

Horst D. Simon, t

Numerical Aerodynamic Simulation (NAS) Systems Division

NASA Ames Research Center, Mail Stop 258-5

Moffett Field, CA 94035

Phuong Vu,

and

Chao Yang

Cray Research Inc.

1345 Northland Drive

Mendota Heights, MN 55120

February 24, 1989

Abstract

Numerical results with a general sparse linear equation solver pack-

age are presented. This software has been developed for production

use by researchers at Boeing Computer Services and is available from

Cray Research for Cray X-MP systems. Recently this package has

been ported to the new eight processor Cray Y-MP. Initial results us-

ing microtasking and autotasking primitives and all eight processors
yielded 1682 MFLOPS for the factorization of a sparse matrix of order

24,565. The results reported here demonstrate the high performance

levels obtainable on the new Cray Y-MP in autotasking mode. We

also believe that this is the highest speed ever obtained factoring a

non-trivial sparse matrix.

tThe author is an employee of Boeing Computer Services."





1 Introduction

The efficient solution of general sparse linear systems of equations is a task

common to a variety of important engineering and scientific applications,

such as structural analysis, computational fluid dynamics, economic model-

ing, chemical engineering, circuit and device simulation, and electric power

network problems [71. From an algorithmic perspective the implementation

of general sparse methods on vector and parallel machines poses a great intel-

lectual challenge. Over the last couple of years significant progress has been

made in implementing efficient sparse matrix methods on these machines.

The multifrontal method, which is an alternative to the approach described

below, has been developed by Duff and Reid [4, 5]. It has been implemented

on the Cray X-MP by Ashcraft [3], and on the Cray 2 by Amestoy and Duff

[1]. General sparse methods for distributed memory parallel machines, in

particular hypercubes have been implemented by George et al. at Oak Ridge

(see [8] for a summary and survey).

We were involved in the development of a production software package for

the efficient solution of these sparse systems [2], using the new algorithmic

concept of a supernodal sparse factorization. Very high speeds have been

obtained in single processor mode on a Cray X-MP as documented in [2,

11]. Recently this code has been ported to the eight processor Gray Y-MP,

and modified for parallel execution using the microtasking and autotasking

primitives.

The Gray Y-MP is a shared memory machine with a relatively small

number of powerful vector processors. The Cray Y-MP has a cycle time

(depending on the model) of 6.0 to 6.49 nanoseconds. The achievable peak

for a single processor Y-MP with a 6.0 ns clock is 313.7 MFLOPS.

A good overall strategy for achieving high performance on a machine

like the Y-MP is obtain a high degree of vectorization first, and then to

utilize multiple processors without destroying vectorization. On a machine

llke the Y-MP more substantial gains can be made with good vectorization

(speed-ups by a factor of 20 over scalar code), than with good paraUelization

(speed-ups by a factor of 8 over single processor performance).

After autotasking a highly vectorized code we were able to obtain speeds

of up to 1.68 GFLOPS. We believe that this is currently the fastest produc-

tion quality sparse linear solver available.



2 Vectorization

Let us first describe our strategy to obtain a high degree of vectorization.

Until recently general sparse matrix methods have not gained wide accep-

tance among the developers of software for large scale applications. This was

chiefly due to the indirect addressing required by the numerical data struc-

tures. Hence these codes did not vectorize on first generation supercomputers

[10]. This situation was improved with the availabiLity of hardware gather-

scatter on most recent vector computers.

However, the major improvement was the application of the idea of a

supernode. Similar to dense Linear algebra operations, the key to high per-

formance for sparse methods is to recognize where double or triple-level-loops

can be vectorized by loop unroLling or related techniques. The use of vector-

ization at a higher level results in a reduction of memory traflSc. In the sparse

case the memory references saved are gather/scatter operations, which are

usually more costly than their dense counterparts.

The key ideas come from the graph theory model of the sparse elimination

process [9]. It has been observed that successive steps of elimination generate
a coalescing of sparsity structure in the matrix. This means that several

columns in the factored matrix share essentially the same sparsity pattern.

In the graph theory model the nodes of the graph corresponding to columns

with the same sparsity structure are said to be indistinguishable. We call each

set of indistinguishable nodes a supernode. The shared sparsity pattern of a

supernode allows us to carry out the elimination as a sequence of supernodM

updates. Computationally that means that we have replaced the sequence of

gather-SAXPY-scatter by gather-multiple SAXPY-scatter. Thus a reduction

of memory references results. Further speed-up is obtained by implementing

the multiple SAXPY's as a matrix vector multiply, which can be sped up

using standard loop-unrolling techniques. More details on this approach and

numerical results on the Cray X-MP are given in [2].

3 Microtasking and Autotasking

Microtasking and autotasking are some of the tools which are provided on

the Cray Y-MP to utilize multiple processors. Both are based on directives.

With these directives a user can indicate, for example, that the iterations of

2



an outer loop can be executed in arbitrary order, and thus can be distributed

over multiple processors. Autotasking is the more recent product and in

many ways an improvement over microtasking. Autotasking directives are

more flexible and are implemented more efficiently.

Using profiling tools it was identified that the majority of the execution

time for the sparse matrix factorization was spent in two matrix-vector mul-

tiplication subroutines. These two routines are the result of the supernode

operations described above, and involve one or two levels of indexed address-

ing of the matrix data. These routines were microtasked, and more recently

autotasked by breaking the matrix into p submatrices, consisting of r_/p rows.

Here p is the number of processors available.

The autotasking implementation is very sophisticated about when to use

the autotasked version of the kernels and when to use the single processor

version. The switch-over points have been determined very carefully. On the

factorization with the highest speed, we observed a performance deterioration

by about 200 MFLOPS, when the autotasked subroutine was used through-

out the factorization phase. This determination of the optimal switch-over

points was the main difficulty in obtaining a high performance paraLlel im-

plementation. The actual mechanics of autotasking were relatively simple.

Figure 1 shows schematicaLly the interplay of parallelization and vec-

torization, with "strip-mining" the doubly-indexed matrix-vector multiply,

without destroying the carefully tuned vectorization. Note that Figure 1 is

a conceptual simplification, since the underlying matrix is not contiguously

stored in memory.

4 Performance Results

The numerical results with the vectorized supernodal code have appeared

already in the literature [2]. The results in [2] demonstrate a factorization

performance in excess of 100 MFLOPS on the 9.5 nanosec Cray X-MP using

all FORTRAN code, and loop unrolling to a depth of eight. These results

were obtained on real structural analysis problems from the Boeing-Harwell

Sparse Matrix Test Collection [6]. The models analyzed include the rear

bulkhead of a Boeing 767 aircraft (BCSSTK29) and a 76 story high-rise

building in downtown Seattle (BCSSTK25). In the meantime these numbers

have been improved for the X-MP. Using assembly coded subroutines one



nip _--

parallel|
strips [_

m
m

i

-i-

8 = depth of unrolling
I

i

Figure 1: Autotasking of Supernodal Code.



of the authors (Phuong Vu) has obtained 188 MFLOPS single processor

performance on a 8.5 nanosec Cray X-MP for BCSSTK33.

In our numerical tests on the Y-MP we have used some of the larger

structural analysis matrices from [6]. These matrices are labeled BCSSTKxx

and are described in more detail in the literature ([2, 6, 10]). In addition

we have tested the performance on four structures matrices from the the

Computational Mechanics Group at NASA Langley Research Center called

NASAxxxx. These problems were provided by Olaf Storaasli. The largest

problem in this group is a 54,870 degree of freedom model of the Space Shuttle

Rocket Booster (NASASRB). Finally we created model problems using the

27 point operator and 5 unknowns per grid point on three dimensional cubic

grids of size N x N x N. We considered the cases N = 10, N = 15, and N =

17, and the resulting matrices are labeled CUBE10, CUBE15, and CUBE17.

These matrices can be considered as a model of the linear systems, which are

solved in the fully implicit three-dimensional Navier-Stokes equations.

Unless noted otherwise, all timing results have been obtained in dedicated

mode on the Cray Y-MP, Serial Number 1001, at Cray Research with a 6.49

nanosec cycle time. Several tests have been repeated on the Cray Y-MP at

NASA Ames Research Center, Serial Number 1002, which has a cycle time

of 6.3 nanosec. As to be expected, we observed that execution times scaled

proportionally with the cycle time. Since the set of results obtained on the

slower Y-MP is more complete, we report these results here for consistency.

Based on these observations we expect a further performance improvement

by about 8% on future Y-MP's, which will have a 6.0 nanosec cycle time.

The single processor factorization times are given in Table 1. The table

contains the execution times and MFLOPS rates for three implementations

of the key computational kernels. The highest performance was obtained

with an assembly coded version of the key matrix multiplication routines

(SGEMVS and SGMVIS). For comparison we list the results obtained with

an all Fortran implementation of these subroutines with loop unrolling and

tuned switch over from inline to subroutine calls (SGEMV8 and SGMVIS),

and an in line Fortran version. Table 1 shows that the assembly coded version

is more than twice as fast as the inline Fortan version. The highest single

processor performance of 280 MFLOPS was measured on the model problem

CUBE17, a sparse matrix of order 24,565 with about 1.5 million nonzeros

in the unfactored matrix. On many of the large problems we obtain a one-

processor performance in excess of 200 MFLOPS for the factorization, which

5



Table

Problem

BCSSTKI5

BCSSTKI6

BCSSTK23

BCSSTK24

BCSSTK29

BCSSTK30

BCSSTK31

BCSSTK32

BCSSTK33

NASAl824

NASA2910

NASA4704

NASASRB

CUBE10

CUBE15

CUBE17

I: Sin

Neqns

3948

4884

3134

3562

13992

28924

35588

44609

8738

1824

2910

4704

54870

5000

16875

24565

_le CPU Results for Supernodal Code

NumFact with NumFact with

SGEMVS+SGMVIS SGEMV8+SGMVI8

Time MFLOPS

0.91 182.81

0.85 176.38

0.67 177.11

0.2.5 128.86

2.34 168.54

4.75 196.14

11.00 232.38

6.23 178.87

5.O5 238.86

0.09 59.42

0.21 90.10

0.33 108.14

20.21 231.71

Time MFLOPS

1.10 150.45

1.06 141.11

0.79 149.72

0.33 97.97

2.86 137.69

6.02 154.95

13.22 193.31

7.88 141.39

6.05 199.11

0.10 50.69

0.27 80.14

0.39 89.49

24.99 187.45

4.34 212.62

67.75 238.60

134.20 241.07

NumFact with

Inline MV+MVI

Time MFLOPS

1.90 87.03

1.80 83.01

1.29 92.63

0.49 66.26

4.64 85.07

10.71 87.07

24.42 104.69

13.40 83.10

11.15 108.21

0.II 46.14

0.35 61.10

0.54 65.46

48.08 104.64

7.97 115.88

131.21 123.21

259.52 124,66

3.63 254.58

57.99 278.79

115.24 280.75

6



Table 2: Multiple CPU Results for Supernodal Code (MFLOPS)

Problem

BCSSTKI5

BCSSTKI6

BCSSTK23

BCSSTK24

BCSSTK29

BCSSTK30

BCSSTK31

BCSSTK32

BCSSTK33

NASA1824

NASA2910

NASA4704

NASASRB

CUBE10

CUBE15

CUBE17

Neqns

3948

4884

3134

3562

13992

28924

35588

44609

8738

1824

2910

4704

54870

5000

16875

24565

1

Proc.

182.81

176.38

177.11

128.86

168.54

196.14

232.38

178.87

238.86

59.42

90.10

108.14

231.71

254.58

278.79

280.75

2

Proc.

233.36

225.85

227.31

146.08

208.53

263.87

370.13

229.93

381.52

63.67

108.04

122.98

355.79

422.04

537.08

547.77

Number of Processors

4

Proc.

278.34

265.78

271.12

155.46

238.12

323.61

523.55

269.41

548.33

64.51

112.43

131.34

491.45

649.36

965.47

1005.92

Proc. Proc.

288.70 293.41

270.63 272.41

280.68 286.79

156.31 156.39

244.10 247.25

333.42 340.65

563.57 597.64

276.53 280.82

588.90 621.74

64.55 64.60

112.70 112.75

132.22 132.61

523.33 548.90

710.10 759.57

1147.54 1306.92

1202.64 1382.94

7

I Proc.

295.96

273.58

291.54

157.33

248.83

345.47

621.17

282.82

644.78

64.55

112.81

132.51

563.97

781.20

1451.81

1545.12

8

Proc.

296.55

274.95

291.30

155.93

248.72

346.67

637.15

283.77

663.06

64.54

112.27

132.66

578.02

826.67

1569.55

1681.92

is more than two thirds of the peak performance of the machine.

The factorization time for the shuttle problem with 54,870 degress of

freedom took about 20 seconds. The shuttle problem is to be considered

very large, even by todays structural engineering standards. For comparison,

the widely used structural analysis package MSC/NASTRAN imposed up to

recently an upper limit of 64,000 degrees of freedom on its users. The fact that

a model at the upper limits of todays engineering computing can be solved

in a time which permits interactive processing is by itself remarkable, and

demonstrates the computational power of both the Y-MP and the algorithmic

approach pursued here.

In Table 2 the results for the parallel implementation of the supernodal

code are listed. The highest performance was again obtained for the problem

CUBE17, where we measured 1682 MFLOPS using eight processors. This



problem also shows the highest speed-up with about a factor of six. For

most of the other problems our speed-up is considerably less. For some of

the smaller problems we see less than a factor of two speed-up even when

using all eight processors. This is not a problem with the hardware, but with

the lack of paraLlelizable work. In the simple loop level approach pursued

here, we depend on the size of the matrices used in the matrix multiply

routines for extracting parallizeable work, i.e. the number of rows in the

matrix in Figure 1. In order to make autotasking worthwhile, we need a

minimum number of rows (depending of the size of the supernode) for each

of the supernodal updates. For example if the number of columns NCOL in

the supernode is 20 we will not obtain any benefits using autotasking until

the number of rows NROW is at least around 200, but for for NCOL = 50 the

benfits of autotasking start at NROW = 50 etc. For general sparse matrices

there is no guarantee that this minimum number of rows is exceeded in every

supernodal update. This explains the flat speed-up curves for some of the

problems.

5 Summary

We have demonstrated that the supernodal general sparse code and parallel

processing on the Cray Y-MP form a powerful combination allowing sparse

matrix factorization at extremely high speeds. However, our results are pre-

liminary and offer several possibihties for improvement. On the hardware

side all future Y-MP's wiU have a cycle-time of 6 nanosec. The faster clock

will give an improvement of about 8% over the results reported here without

any code modifications. Further finetuning of the autotasked routines may

yield more improvements. Finally, we need to consider the case of small su-

pernodes, where other approaches are needed to gain further speed-ups. In

spite of their preliminary nature we believe, however, that our results are the

best currently available.

References

[1] P. Amestoy and I. Duff. Vectorization of a multiprocessor multifrontai

code. Technical Report TR 88/3, CERFACS, Toulouse, France, October



1988.

i2] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon. Recent

progress in sparse matrix methods for large linear systems. International

Journal on Supercomputer Applications, 1(4):10 - 30, 1987.

[3] C.C. Ashcraft. A vector implementation of the multifrontal method for

large sparse symmetric positive definite linear systems. Technical Re-

port ETA-TR-51, Boeing Computer Services, 1987.

[4] I. Duff and J. Reid. The multifrontal solution of indefinite sparse sym-

metric linear systems. ACM TOMS, 9(3):302 - 325, 1983.

[5] I. Duff and J. Reid. The multifrontal solution of unsymmetric sets of

linear equations. SIAM J. Sci. Stat. Comput., 5:633 - 641, 1984.

[6] I. S. Duff, Roger G. Grimes, and John G. Lewis. Sparse Matrix Test

Problems. Technical Report CSS 191, Harwell Laboratory, Didcot,

Oxon, England, 1987.

[7] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse

Matrices. Clarendon Press, Oxford, 1986.

[8]A. George, M. Heath, J. Liu, and E. Ng. Solution of Sparse Positive

Definite Systems on a Hypercube. Technical Report ORNL/TM-10865,

Oak Ridge National Laboratory, Oak Ridge, TN, October 1988.

[9] A. George and J. Liu. Computer Solution of Large Sparse Positive Def-

inite Systems. Prentice Hall, Englewood Cliffs, 1981.

[10] J.G. Lewis and H.D. Simon. The impact of hardware gather/scatter on

sparse Gaussian elimination. SIAM J. Sci. Stat. Comp., 9(2):304 - 311,

1988.

[11] H.D. Simon. Modern Algorithms for Supercomputing: Sparse Matrix

Algorithms. Technical Report, IEEE Computer Society, November 1988.

Tutorial Notes, Supercomputing '88.

9





January 17, 1989

To: D. Bailey
E. Barszcz
R. Fatoohi
T. Lasinski

From: H. Simon

Subject: Informal review of paper

Please review the enclosed manuscript "Sparse Matrix Factorization at 1.68 GFLOPS". I am
planning to turn it into an RNR report and to submit it to SIAM J. Sci. Stat. Comp.
I have already submitted an earlier version to the "Gordon Bell Award Competition". Because
of the pressing deadline, only David Bailey had an opportunity to review this earlier version.




